首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   8篇
  2023年   1篇
  2021年   2篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   2篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1991年   7篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1975年   2篇
  1971年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
21.
The activation of heterodimeric (α/β) integrin transmembrane receptors by cytosolic protein talin is crucial for regulating diverse cell-adhesion-dependent processes, including blood coagulation, tissue remodeling, and cancer metastasis. This process is triggered by the coincident binding of N-terminal FERM (four-point-one-protein/ezrin/radixin/moesin) domain of talin (talin-FERM) to the inner membrane surface and integrin β cytoplasmic tail, but how these binding events are spatiotemporally regulated remains obscure. Here we report the crystal structure of a dormant talin, revealing how a C-terminal talin rod segment (talin-RS) self-masks a key integrin-binding site on talin-FERM via a large interface. Unexpectedly, the structure also reveals a distinct negatively charged surface on talin-RS that electrostatically hinders the talin-FERM binding to the membrane. Such a dual inhibitory topology for talin is consistent with the biochemical and functional data, but differs significantly from a previous model. We show that upon enrichment with phosphotidylinositol-4,5-bisphosphate (PIP2) – a known talin activator, membrane strongly attracts a positively charged surface on talin-FERM and simultaneously repels the negatively charged surface on talin-RS. Such an electrostatic “pull-push” process promotes the relief of the dual inhibition of talin-FERM, which differs from the classic “steric clash” model for conventional PIP2-induced FERM domain activation. These data therefore unravel a new type of membrane-dependent FERM domain regulation and illustrate how it mediates the talin on/off switches to regulate integrin transmembrane signaling and cell adhesion.  相似文献   
22.
23.
Cells undergo dynamic remodeling of the cytoskeleton during adhesion and migration on various extracellular matrix (ECM) substrates in response to physiological and pathological cues. The major mediators of such cellular responses are the heterodimeric adhesion receptors, the integrins. Extracellular or intracellular signals emanating from different signaling cascades cause inside-out signaling of integrins via talin, a cystokeletal protein that links integrins to the actin cytoskeleton. Various integrin subfamilies communicate with each other and growth factor receptors under diverse cellular contexts to facilitate or inhibit various integrin-mediated functions. Since talin is an essential mediator of integrin activation, much of the integrin crosstalk would therefore be influenced by talin. However, despite the existence of an extensive body of knowledge on the role of talin in integrin activation and as a stabilizer of ECM-actin linkage, information on its role in regulating inter-integrin communication is limited. This review will focus on the structure of talin, its regulation of integrin activation and discuss its potential role in integrin crosstalk. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   
24.
25.
The E fragment, derived from the NH2-terminal aspect of fibrinogen by plasmin cleavage (fg-E), possesses two generically distinct sets of antigenic expressions. The major set of antigens is expressed by the parent molecule as indicated by the capacity of a major subpopulation of antibodies present in antiserum to fg-E and reactive with fg-E to: (a) react with fibrinogen, and (b) be specifically absorbed by fibrinogen but appears following proteolysis with plasmin. These cleavage associated neoantigens (fg-E-neo) specifically react with a minor subpopulation of antibodies present in antiserum to fg-E.E fragments isolated after varying exposures to plasmin all expressed fg-E-neo, but early E fragments exhibited quantitatively less neoantigenic expression than more extensively degraded E fragments. The entire fg-E-neo expression is recovered on a single isolated constituent chain of the E fragment, and immunochemical analysis with antiserum to the isolated constituent chain-bearing fg-E-neo identifies it as a derivative of the gamma chain constituent, exhibits marked stability to physicochemical denaturation and enzymatic degradation. These properties suggest that the neoantigen may be associated with a specific amino acid sequence which is exposed by the cleavage process. The identification and localization of fg-E-neo provides a specific molecular marker site for the characterization of structural and conformational changes associated with catabolism and function of fibrinogen.  相似文献   
26.
MicroRNAs are small non-coding RNAs that are directly involved in the regulation of gene expression by either translational repression or degradation of target mRNAs. Because of the high level of conservation of the target motifs, known as seed sequences, within the 3′-untranslated regions, a single microRNA can regulate numerous target genes simultaneously, making this class of RNAs a powerful regulator of gene expression. The miR200 family of microRNAs has recently been shown to regulate the process of epithelial to mesenchymal transition during tumor progression and metastasis. Here, we report that the expression of WAVE3, an actin cytoskeleton remodeling and metastasis promoter protein, is regulated by miR200 microRNAs. We show a clear inverse correlation between expression levels of WAVE3 and miR200 microRNAs in invasive versus non-invasive cancer cells. miR200 directly targets the 3′-untranslated regions of the WAVE3 mRNA and inhibits its expression. The miR200-mediated down-regulation of WAVE3 results in a significant reduction in the invasive phenotype of cancer cells, which is specific to the loss of WAVE3 expression. Re-expression of a miR200-resistant WAVE3 reverses miR200-mediated inhibition of cancer cell invasion. Loss of WAVE3 expression downstream of miR200 also results in a dramatic change in cell morphology resembling that of a mesenchymal to epithelial transition. In conclusion, a novel mechanism for the regulation of WAVE3 expression in cancer cells has been identified, which controls the invasive properties and morphology of cancer cells associated with their metastatic potential.  相似文献   
27.
28.
Both talin head domain and kindlin-2 interact with integrin β cytoplasmic tails, and they function in concert to induce integrin activation. Binding of talin head domain to β cytoplasmic tails has been characterized extensively, but information on the interaction of kindin-2 with this integrin segment is limited. In this study, we systematically examine the interactions of kindlin-2 with integrin β tails. Kindlin-2 interacted well with β(1) and β(3) tails but poorly with the β(2) cytoplasmic tail. This binding selectivity was determined by the non-conserved residues, primarily the three amino acids at the extreme C terminus of the β(3) tail, and the sequence in β(2) was non-permissive. The region at the C termini of integrin β(1) and β(3) tails recognized by kindlin-2 was a binding core of 12 amino acids. Kindlin-2 and talin head do not interact with one another but can bind simultaneously to the integrin β(3) tail without enhancing or inhibiting the interaction of the other binding partner. Kindlin-2 itself failed to directly unclasp integrin α/β tail complex, indicating that kindlin-2 must cooperate with talin to support the integrin activation mechanism.  相似文献   
29.
The opportunistic fungus Candida albicans is one of the leading causes of infections in immunocompromised patients, and innate immunity provides a principal mechanism for protection from the pathogen. In the present work, the role of integrin α(X)β(2) in the pathogenesis of fungal infection was assessed. Both purified α(X)β(2) and α(X)β(2)-expressing human epithelial kidney 293 cells recognized and bound to the fungal hyphae of SC5314 strain of C. albicans but not to the yeast form or to hyphae of a strain deficient in the fungal mannoprotein, Pra1. The binding of the integrin to the fungus was inhibited by β-glucans but not by mannans, implicating a lectin-like activity in recognition but distinct in specificity from that of α(M)β(2). Mice deficient in α(X)β(2) were more prone to systemic infection with the LD(50) fungal inoculum decreasing 3-fold in α(X)β(2)-deficient mice compared with wild-type mice. After challenging i.v. with 1.5 × 10(4) cell/g, 60% of control C57BL/6 mice died within 14 d compared with 100% mortality of α(X)β(2)-deficient mice within 9 d. Organs taken from α(X)β(2)-deficient mice 16 h postinfection revealed a 10-fold increase in fungal invasion into the brain and a 2-fold increase into the liver. These data indicate that α(X)β(2) is important for protection against systemic C. albicans infections and macrophage subsets in the liver, Kupffer cells, and in the brain, microglial cells use α(X)β(2) to control fungal invasion.  相似文献   
30.
Kindlins are essential for integrin activation in cell systems and do so by working in a cooperative fashion with talin via their direct interaction with integrin β cytoplasmic tails (CTs). Kindlins interact with the membrane-distal NxxY motif, which is distinct from the talin-binding site within the membrane-proximal NxxY motif. The Tyr residues in both motifs can be phosphorylated, and it has been suggested that this modification of the membrane-proximal NxxY motif negatively regulates interaction with the talin head domain. However, the influence of Tyr phosphorylation of the membrane-distal NxxY motif on kindlin binding is unknown. Using mutational analyses and phosphorylated peptides, we show that phosphorylation of the membrane-distal NITY759 motif in the β3 CT disrupts kindlin-2 recognition. Phosphorylation of this membrane-distal Tyr also disables the ability of kindlin-2 to coactivate the integrin. In direct binding studies, peptides corresponding to the non-phosphorylated β3 CT interacted well with kindlin-2, whereas the Tyr759-phosphorylated peptide failed to bind kindlin-2 with measurable affinity. These observations indicate that transitions between the phosphorylated and non-phosphorylated states of the integrin β3 CT determine reactivity with kindlin-2 and govern the role of kindlin-2 in regulating integrin activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号